
6 CROSSTALK The Journal of Defense Software Engineering June 1998

The vast majority of Web docu-
ments are created and presented
in the HyperText Markup Lan-

guage (HTML). HTML is well suited
for hypertext linking and the display of
small, relatively simple documents.
HTML is an application of the Standard
Generalized Markup Language (SGML),
defined in ISO 8879:1986. SGML is a
metalanguage designed to define docu-
ment formats. SGML allows documents
to describe their own grammar, which is
implemented as a set of tags and the
structural relationship that these tags
represent. Although HTML also pro-
vides for a tag set that makes it easy to
build Web documents, the HTML tag
set is comparatively small and cannot be
extended. This lack of flexibility limits
HTML’s ability to address extensibility,
structure, and validation [1]:
• Extensibility: HTML does not allow

users to specify their own tags or
attributes, which limits their ability
to parameterize or semantically
qualify their data.

• Structure: HTML does not support
the specification of deep structures
needed to represent database schemas
or object-oriented hierarchies.

• Validation: HTML does not sup-
port the kind of language specifica-
tion that allows consuming applica-
tions to check data for structural
validity.
At the other end of the functionality

spectrum is SGML. SGML allows for
the extensibility, structure, and valida-
tion that are missing in HTML. With

SGML, document formats can be de-
fined, and extremely large document
repositories can be managed. However,
SGML implementations are expensive,
and SGML provides many features that
are either unnecessary for Web publish-
ing or require a large effort to implement
in a Web environment.

Enter the Extensible Markup Lan-
guage, (XML). As reported by Time
Magazine in November 1997, “Doing
business on the net is hard because the
underlying software is so dumb. XML
will fix that.” [2] To put it just as elo-
quently, Bill Gates, chief executive of-
ficer of Microsoft, stated that “XML is a
breakthrough technology.”

Procedural and Generalized
Markup
To understand XML and its impact on
the Web, a brief introduction to general-
ized markup is necessary. Markup in
electronic documents is the codes em-
bedded in a document text that store the
information required for electronic pro-
cessing. Common examples of docu-
ment markup include font family and
font size.

Markup that represents a procedure
for output devices is often referred to as
procedural output. For example, when
we use a word processor we choose fonts,
boldness, and location of text on the
page. By marking a word bold, we have
defined a procedure that is carried out
by an output device: When we view the
document on a computer monitor, the
word appears bold; when we print the
document, the printer prints the word in

bold. Although procedural markup can
be valuable if all that concerns us is
presentation, it has several limitations:
• Procedural markup does nothing to

maintain information about the
document structure—it is based on
the assumption that document struc-
ture is directly related to document
appearance; only document format-
ting is recorded and all structure is
lost. For example, both quotations
and emphasized words may be itali-
cized, even though a quotation has a
different function than an emphasis.

• Procedural markup is time-consum-
ing and requires a significant amount
of operator training. For example,
the documentation for a large soft-
ware development project may con-
tain thousands of pages, and each of
these pages might adhere to a stan-
dard formatting convention—the
effort to ensure this adherence can be
extremely costly.

• Procedural markup is inflexible.
When a change to a formatting con-
vention is applied, it requires the
manual change of all elements in the
document that are affected. In addi-
tion, the formatting codes are system
dependent: One system may have a
particular typeface that another sys-
tem lacks.
Unlike procedural markup, general-

ized markup is not concerned with for-
matting. A Generalized Markup Lan-
guage (GML) requires two
characteristics from the markup:
• Markup should not describe the

processing to be performed on the

An Overview of the Extensible Markup Language and
Related Content-Management Technologies

Greg Meyer
Nichols Research Corporation

The HyperText Markup Language is the most common document format encountered
on the World Wide Web but is limited to presentation control. Several emerging tech-
nologies such as the Extensible Markup Language are currently being developed that
promise dramatically enhanced content management on the Web. This article intro-
duces these technologies and presents issues to consider when implementing them.



CROSSTALK The Journal of Defense Software Engineering 7June 1998

document; rather, markup should describe the document’s
structure. This descriptive markup needs to be done only
once and will apply to all future processing.

• Markup should be formally defined. With this formal
definition of markup, external programs can be used to
process the document.
In a GML, a tag is attached to text elements, and format-

ting rules are associated with these tags. A formatter processes
the text and produces a document in a format that is suitable
for the output device. The advantages that a GML has over a
procedural markup process include the following:
• Generalized markup describes document structure. Mean-

ingful names can be given to tags, such as <PARAGRAPH>

to represent a paragraph, and <SURNAME> to represent a
person’s last name. This application of meaningful names
to tags allows the automatic processing of the document,
such as the compilation of an index of tagged words.

• Generalized markup allows for much flexibility. To change
the appearance of the document, it is necessary only to
modify an external procedure that processes the document.
This single modification will suffice for all occurrences of
the appearance change, and the labor involved with hun-
dreds or thousands of manual changes can be avoided.

XML
XML is a coding system that allows any type of information to
be delivered across the Web. Like HTML, the heritage of
XML is in SGML. In fact, like HTML, XML is often consid-
ered an SGML application (technically, HTML is an SGML
application, whereas XML is an SGML profile).

The XML specification was developed by a group of
SGML industry leaders and the World Wide Web Consortium
(W3C) in 1996, with Jon Bosak of Sun Microsystems as the
acting chairman. The goal of the XML Working Group (origi-
nally known as the SGML Editorial Review Board) was to
develop a markup language that had the functionality of
SGML but could be effectively presented on the Web. The
initial working draft was completed in late 1996 and became a
W3C Proposed Recommendation Dec. 8, 1997 and a W3C
Recommendation Feb. 10, 1998. The recommendation (REC-
xml-19980210) can be found on the W3C site at http://
www.w3.org/TR/1998/REC-xml-19980210.html.

The recommendation outlines the design goals for XML [3]:
• XML shall be straightforwardly usable over the Internet.
• XML shall support a wide variety of applications.
• XML shall be compatible with SGML.
• It shall be easy to write programs that process XML docu-

ments.
• The number of optional features in XML is to be kept to

the absolute minimum, ideally zero.
• XML documents should be human-legible and reason-

ably clear.
• The XML design should be prepared quickly.
• The design of XML shall be formal and concise.
• XML documents shall be easy to create.
• Terseness in XML markup is of minimal importance.

The results of the XML Working Group is a GML that
allows the creation of new tag sets, instead of being forced to
use the minimal tag set available in HTML. More important,
XML allows documents to be self-describing and provides for
the validation of documents.
• XML documents are self-describing in that they can con-

tain header information known as a Document Type Defi-
nition (DTD). The DTD describes the structural rules that
the markup in the document is to follow, declares internal
and external resources that form part of the document or
might be required within the document, and lists non-
XML resources that are found in the document for which
external helper applications are required. This DTD is
instrumental in the successful application of XML process-
ing software.

• XML and a DTD enables a document to be validated by
describing a rule set to which that the document must
adhere. (It is not necessary for an XML document to con-
tain a DTD—XML documents without a DTD are con-
sidered well formed but not valid. A well-formed document
adheres to a standard set of rules such as a requirement that
each opening tag is accompanied by a closing tag.)
So what is the end result of an XML document? It can be

summarized as
• A document that “understands itself” – header informa-

tion that specifies which elements are allowed and the
properties of these elements.

• A document with a browseable and searchable structure
– the refusal to allow the exclusion of necessary markup
tags allows XML documents to be accessed by XML-
aware tools.
The best way to appreciate XML is to look at an example

of XML code. In this example, imagine that a company sells
automobile parts on line. Marketing descriptions of the prod-
ucts are written in HTML, but names and addresses of cus-
tomers, prices, and discounts are formatted with XML. Fol-
lowing is the information that describes a customer.

<CUSTOMER-DETAILS>

<NAME>American Wholesale Auto Parts</NAME>

<ADDRESS>

<STREET>1234 Maple Drive</STREET>

<CITY>Grayson</CITY>

<STATE>Colorado</STATE>

<ZIP-CODE>80113</ZIP-CODE>

</ADDRESS>

</CUSTOMER-DETAILS>

The XML tags such as <STREET> and </STREET> give
meaning to the text “1234 Maple Drive.” Its simple syntax is
easy to process by machine and has the attraction of remaining
understandable to humans.

Related Technologies
As with any other emerging technology, XML brings along
with it a host of related technologies. Two of the most impor-

An Overview of the Extensible Markup Language and Related Content-Management Technologies



8 CROSSTALK The Journal of Defense Software Engineering June 1998

tant of these technologies are the XML linking mechanism and
XML style sheets.

XML Linking Language (XLink)
(http://www.w3.org/TR/WD-xml-link.html)
XML linking is defined by the XLink specification as “a simple
set of constructs that may be inserted into XML documents to
describe links between objects and to support addressing into
the internal structures of XML documents. It is a goal to use
the power of XML to create a structure that can describe the
simple unidirectional hyperlinks of today’s HTML as well as
more sophisticated multiended, typed, self-describing links.”
[4] XLink allows specification of which elements in a docu-
ment are to be interpreted as links and the specific nature of
these links. For example, a default link behavior can be defined
that requires the user to take a specific action before anything
is done with the link. XLink also introduces extended links
into Web documents. Extended links can point to any number
of targets and can also be bidirectional and multidirectional.

Extensible Style Language (XSL)
(http://www.w3.org/TR/NOTE-XSL.html)
XML style sheets are defined by the XSL specification as “the
deliverable for Phase III of the SGML, XML, and Structured
Document Interchange Activity of the W3C.” [5] The charter
for this activity specifies the use of ISO/IEC 10179 Document
Style Semantics and Specification Language (DSSSL) for the
style-sheet language component. XSL is based on DSSSL and
is a style-sheet language designed for the Web community. It
provides functionality beyond HTML’s Cascading Style Sheets
(CSS) such as element reordering. It is expected that CSS will
be used to display simply structured XML documents, and
XSL will be used where more powerful formatting capabilities
are required or for formatting highly structured information
such as XML-structured data or XML documents that contain
structured data.

Capabilities provided by XSL allow the
• formatting of source elements based on ancestry and

descendency, position, and uniqueness.
• creation of formatting constructs, including generated text

and graphics.
• definition of reusable formatting macros.
• writing of direction-independent style sheets.
• creation of an extensible set of formatting objects.

A few other XML-related technologies include the following:

Resource Description Framework (RDF)
(http://www.w3.org/Metadata/RDF/)
RDF may prove to be one of XML’s most important applica-
tions. RDF allows applications to describe new data fields and
classes—defining relationships between XML data that might
otherwise be left undefined. For example, RDF can be used for
bookmarks, user preferences, and a host of other information
not directly related to an XML document. This application is a
prominent use of metadata (data about other data). RDF will
enable enhanced search engines, descriptive relationships be-

tween content within a single Web site or between different
Web sites, and content ratings for privacy and child protection.

Channel Definition Format (CDF)
(http://pushconcepts.com/microsoft.htm)
CDF provides the ability to author content once for publish-
ing via many different vehicles using push, pull, and static
mechanisms. CDF depends on XML for its declarative syntax.

Open Software Description Format (OSD)
(http://www.w3.org/TR/NOTE-OSD.html)
OSD uses unique XML tags to describe software components,
including their versions, underlying structure, relationships to
other components, and dependencies. It can describe and
reference platform native code. Software packages that are
described using OSD can be delivered automatically using
push technology, allowing for simplified software upgrades and
avoiding cross-platform installation complexities.

Open Financial Exchange (OFX)
(http://www.ofx.net)
OFX is a framework for exchanging financial data and instruc-
tions among financial institutions and their customers.

XML/Electronic Data Interchange (XML/EDI)
(http://www.geocities.com/WallStreet/Floor/5815)
XML/EDI provides a standard framework to describe different
types of data such as shipping invoices and health-care claims.
XML/EDI allows information in these various types of data to
be searched, decoded, manipulated, and displayed consistently
and correctly by implementing EDI dictionaries.

Implementing Content Management
Technologies
As an emerging technology, XML has yet to garner widespread
industry tool support. This, however, is sure to change in the
near future. At a minimum, XML implementation requires an
XML or ASCII text editor, an XML parser, and an XML
viewer.

Any ASCII text editor can be used to author XML docu-
ments. However, there are a few XML-specific authoring tools
that make the authoring process significantly easier. XML can
be parsed using several tools.

A few of the growing bin of XML-specific software
include
• Jumbo (by Peter Murray-Rust) – a set of Java classes de-

signed for viewing XML applications (http://ala.vsms.
nottingham.ac.uk/vsms/java/jumbo).

• DataChannel XML Development Kit (by DataChannel) –
an enterprise development tool to integrate databases,
legacy systems, and business-to-business transactions over
the Web using XML (http://www. datachannel.com).

• Lark (by Tim Bray) – an XML processor written in Java
(http://www. textuality.com/Lark).

• Copernican XML Developer’s Toolkit (by Copernican
Solutions) – a toolkit that provides for the checking, valida-

Internet and Intranet



CROSSTALK The Journal of Defense Software Engineering 9June 1998

tion, loading, and access of XML
documents (http://www.copsol.
com/products/xdk/XDK).

• Internet Explorer 4.0 and MXSML
(both by Microsoft) – MXSML is an
XML parser written in Java, whereas
Internet Explorer contains the first
public implementation of an XML
engine within a Web browser (http://
www.microsoft.com/workshop/
author/xml/parser).

• TclXML (by Steve Ball) – a Tcl add-
on that allows the parsing of XML
documents and DTDs (http://
tcltk.anu.edu.au/XML).

• XML Styler (by Arbortext) – an
XML style sheet editor (http://
www.arbortext.com).

• FrameMaker (by Adobe) – a compre-
hensive document-authoring suite
that is XML enabled (http://www.
adobe.com).

Closing Thoughts
A final but important question to think
about when considering the implemen-
tation of XML is the large base of
HTML documents that currently exist.
Does the advent of XML portend the
demise of HTML? Probably not. In
most cases, developing XML applica-
tions will not be cost effective. HTML is
an application that works without modi-
fication, there is an incredibly large base
of authoring software for creating
HTML pages, and a strong industry

exists that provides search and retrieval
tools for HTML. Information technol-
ogy is now, and will probably be for
many years, concerned primarily with
delivery of static information. HTML
will probably continue to provide the
ideal solution for the bulk of informa-
tion delivery across the Web for several
years.

However, if intelligent information
management across the Web is re-
quired, XML is a viable, if not domi-
nant, solution. With self-describing and
validating mechanisms, browseable and
searchable document structures, sophis-
ticated linking, and incredibly flexible
presentation support, XML is ideally
situated to leverage the information in
Web-based documents. u

About the Author
Greg Meyer is a princi-
pal consultant in the
Enterprise Solutions
Business Unit of Nichols
Research Corporation.
He has over 13 years
experience in complex

systems integration, Web site develop-
ment, imaging, document management,
and collaborative computing. He is a
certified document imaging architect and
a master of information technology in the
Association for Information and Image
Management. His professional interests
include document management, Web-

based collaborative computing, and
markup languages.

Nichols Research Corporation
10260 Old Columbia Road
Columbia, MD 21046-1707
Voice: 410-290-9500, ext. 103
Fax: 410-290-7012
E-mail: meyerg@nichols.com
Internet: http://www.nichols.com

References
1. Bosak, Jon, “XML, Java, and the Future

of the Web,” http://sunsite.unc.edu/pub/
sun-info/standards/xml/
whyxmlapps.html, March 10, 1997.

2. Krantz, Michael, “Keeping Tabs
Online,” Time Magazine, Nov. 10, 1997.

3. Bray, Tim, Jean Paoli, and C.M.
Sperberg-McQueen, “World Wide Web
Consortium Recommendation: Exten-
sible Markup Language (XML) 1.0,”
http://www.w3.org/TR/PR-xml-
971208.html, Dec. 8, 1997.

4. Bray, Tim and Steve DeRose. “World
Wide Web Consortium Working Draft:
Extensible Markup Language (XML):
Part 2. Linking,” http://www.w3.org/
TR/WD-xml-link-970731.html, July 31,
1997.

5. Adler, Sharon, et al., “World Wide Web
Consortium Note: A Proposal for XSL,”
http://www.w3.org/TR/NOTE-XSL-
970910.html, Aug. 27, 1997.

Additional Reading
1. Light, Richard and Tim Bray, Presenting

XML, Sams Publishing, Indianapolis,
Ind., 1997.

An Overview of the Extensible Markup Language and Related Content-Management Technologies

This article can be found in its entirety on the Software Technology Support Center Web site at
http://www.stsc.hill.af.mil/CrossTalk/crostalk.html. Go to the “Web Addition” section of the table of contents.

Organizations, Operations, and Officers
Databases Supporting NATO’s Operations in Bosnia

Joseph Arsenault
Canuck Consultants

Long before the first allied solider crossed the Sava River into Bosnia or the first air force crew person
landed at Sarajevo Airport or the first maritime sailor debarked at the Split, Croatia seaport, databases
were being used to plan, organize, track, and deploy allied forces. This article presents a review of
databases that support NATO’s Implementation Force and Stabilization Force operations in Bosnia.

Web Addition


